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An improved form of artificial viscosity results from the substitution of the second 
Rankine-Hugoniot equation {du = [-&d(l/p)lll”} in the equation for q. Thus q = 
pc2 / Au I2 becomes q = pc2 1 Au [-ApA(l/p)ll/*l. Large velocity gradients (and small 
pressure gradients) can exist away from shocks, because of geometric effects, and large 
pressure gradients (and small velocity gradients) can exist in nearly static systems. But if 
there are both large pressure and velocity gradients, then a shock is present. Thus we 
see that this form is intrinsically more characteristic of the presence of a shock. Among 
the several advantages of this form of q, the most important is the improvement in the q 
heating description as shocks are reflected. Use of the third Rankine-Hugoniot equation 
in the q is examined, as are some lower-order (linear and 3/2 power) q’s. 

SYMBOLS AND UNITS 

E = specific energy c = constant (dimensionless) 
P = pressure t = time 
U = velocity q = artificial viscosity 
V = volume 77 = compression 
X = position p = density 

Where computer experiment results are quoted, the units (unless otherwise 
specified) are as follows: t(psec), U(cm/,usec), X(cm), p(g/cm”), E(Mbar cm3/cm3), 
v(cm3), q and P(Mbar). 

INTRODUCTION 

The classic paper by von Neumann and Richtmyer [l] on numerical methods 
for shocks was published in 1950. Von Neumann and Richtmyer introduced an 
artificial damping term q to spread the shock so that the hydrodynamic equations 
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will not have discontinuities in the solutions for the variables. Thus, for 
conservation of energy, one obtains (in Lagrangian coordinates) 

a4at = -(P + q)(avjat), (1) 

and for conservation of momentum one obtains 

au/at = -~lipo)(aia4(~ + 4). (2) 

Both equations are modified by the presence of the damping term q. The continuity 
equation does not contain the q and is unchanged. 

The standard approach is to write an equation for q that implies a viscosity-like 
property, because physical viscosity will always spread a shock wave. Since [l] 
was published, it has become apparent that a number of difficulties occur when the 
standard method is used. One serious difficulty is that the q heating obtained at 
reflecting boundaries may not be consistent with the Rank&-Hugoniot conditions. 
Furthermore, the quadratic q for plane waves given by 

q = p(c ox)yLlu/ox)~ = pc2 1 Au 12 (3) 

for zones undergoing compression (otherwise, q = 0) does not provide sufficient 
damping, and the solution is noisy. Frequently a linear q is added to smooth the 
solution. A linear q lowers the order of the accuracy of the solution, and numerical 
experiments show that the Rankine-Hugoniot conditions are not satisfied if the 
linear q contribution becomes large. Furthermore, a linear q frequently introduces 
oscillations, at material interfaces, which persist after the shock has passed. (Inter- 
face noise can also result from the use of “empirical” q forms such as those that 
use awja9.) 

Cameron [2] has proposed a method for reducing these interface errors, but his 
technique is not sufficient. To this date, there remains a need for improving the 
behavior of solutions at boundaries. Thorne and Dahlgren [3] compiled a com- 
parison of different computational techniques, which underlines this need for 
improving artificial-viscosity calculations. 

THEORY AND DISCUSSION 

For the quadratic q term, let us use 

4 = p(c m2 I~~~/~~~~-~~~/~~~~~~~/P~/~~)11’2 I (4) 

for zones being compressed; q = 0, otherwise. Integrating over a shock, this 
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expression is approximately equivalent to that in [I] because, for a shock, the 
second Rankine-Hugoniot equation applies: 

(Au)~ = -AP A(llp). (5) 

However, in differential form, the q of Eq. (4) is not identical to that in Ref. [I]. 
(See Appendix A for elaboration of this point.) 

It is important to observe that away from shocks the q of Eq. (4) is quite different, 
when compared to the q of Eq. (3). The q of Eq. (4) is in a form more uniquely 
associated with shocks because shocks are identified by large velocity changes, 
large pressure changes, and abrupt density changes. All of these effects are present 
in a shock and, conversely, when all of these effects are observed, a shock is present. 
It is possible to have any one of the effects alone and not have a shock. For example, 
large velocity gradients can exist because of geometrical effects. Equation (4) would 
intrinsically treat an adiabatically squeezed sphere correctly. No significant q would 
develop, because the pressure gradient would be small, even though a large velocity 
gradient might be present. Codes frequently avoid q’s in these situations by testing 

b 

. 
4 :*. . ..* 

FIG. 1. (a) Velocity vs position. (b) Pressure vs position. The dotted line represents the 
noise that can be introduced by a linear term. 
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on velocity gradients or other quantities. However, it seems preferable to have a 
4 whose very form avoids these problems. Another example (as shown in Figs. la 
and 1 b) would be the description of a spherical charge of high explosive detonated 
in the earth. After the shock has passed the earth/high-explosive interface, a 
steep velocity gradient develops (proportional to l/r2 in the earth), but the pressure 
gradient is small. 

We are now using in Eq. (4) a mix of gradients of zone quantities (pressure and 
density-l) and grid quantities (velocity). When a perfectly reflecting boundary is 
reached, a mirror zone is required. Boundary conditions are imposed on both zonal 
and grid quantities in the calculation of q. Example calculations are presented here 
that show that the Rankine-Hugoniot conditions are considerably improved at 
reflecting walls. 

Within the shock, perturbations will be damped out proportional to e-at (in 
which CII is a real number) for the quadratic q. However, the value of 01 may be quite 
small near the edges of the shock wave, and additional damping may be required. 
This result can be obtained by using a lower-order q such as a linear one. Let us 
try a 312 power q given by 

q-J/2 = pc3/zw1/2 1 024[-LlPd(l/p)]l/2 /3/*, (6) 

where W is a function with dimensions of velocity. (Appendix B examines the 
stability of a 3/2 power q.) The stability analysis of q requires that the determinant 
resulting from a particular set of equations equals zero. This determinantal equation 
should change continuously in going from the shocked region to the unshocked 
region. This is equivalent to requiring that the damping term 01 should be contin- 
uous in going from the shocked to the unschocked region. The quadratic q and 
3/2 power q (see Appendix B) both satisfy this condition; but the linear q does not, 
unless it is used in the shocked and unshocked regions. This, however, has the 
undesirable consequence of introducing more artificial dissipation. 

Although a linear q has a low-order accuracy and its stability analysis leads to 
a discontinuity in the determinantal equation, there are other arguments that make 
it attractive. For an elastic solid, the ratio q/P goes to zero for a quadratic q as the 
pressure approaches zero, whereas it approaches a constant multiplied by APjP 
for a linear q (see Appendix C). UNEC [4], the first code applied to nuclear 
explosion interactions with earth materials, used a linear q in addition to the 
quadratic q [5] to avoid this problem. However, a small multiplier is desirable for 
the best accuracy. 

It will be noted that, in the limit of infinitely weak shocks (sound waves), the 
relation 

Au = [-AP A(l/p)]liz (7) 
becomes 

Au = (AP/p)(Ap/AP)f/2 = AP/pSS, (8) 
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where SS is the speed of sound, which is just the solution of the characteristic 
equation for sound waves. The author has tried this relation in q equations, and it 
works quite well for weak shocks. Weak shocks in this case had pressure changes of 
more than 10 times the preshock pressure. The form in Eq. (8) is simpler to 
program and could be of value in a two-dimensional or Eulerian grid (an 
application that comes to mind is the simulation of air-frame dynamics). This 
will be the subject of a brief report in the future and will consider strong shocks 
as well. 

The use of the second Rankine-Hugoniot condition naturally suggests the use 
of the third Rankine-Hugoniot condition: 

AE = -P rl(l/p), (9) 

where H is the average of the pressure behind the shock and the pressure in front 
of the shock. Thus one might try using 

AU = [(APIP) AE]1/2 (10) 

in the formulation for q or some combination of Eqs. (7) and (10). 

PROGRAMMING 

For zones at material interfaces, the term [ -AP A(l/~)]l/~ is obtained by a 
one-sided extrapolation. 

For a reflecting boundary, an imaginary zone must be added, and its physical 
state must be identical to that of the boundary zone. These modifications in the 
coding have not increased the running time of test problems by as much as 1%. 
Problems have been run using [-AP A(l/~)]l/~ to replace Au completely in the q 
equation, and they are stable but quite noisy. All problems were run on UKO, a 
modified version of the elastic-plastic KO code [6]. 

KO currently uses qL = pc Ax(Au/d~)(P/p)~~~ for a linear term; that is, it uses 
(P/p)‘/” to get a velocity term rather than using a constant or the sound speed. 
UK0 has not followed this example for the linear term but instead uses the sound 
speed for W. This insures the damping of shocks in an elastic medium. 

A number of “time-selection” schemes have been tried to investigate the impor- 
tance of achieving centering for the viscosity in the energy and momentum 
equations. The velocity, pressure, and density were used from the previous cycle 
(and half cycle) and also from two cycles previous in a variety of combinations. 
None of these schemes evidenced any significant differences. The scheme selected 
was that which was the simplest, i.e., use whatever values of velocity, pressure, and 
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density that exist in the code at the time the viscosity is calculated. There was 
no attempt to iterate on the pressure at the current time step. 

Let us consider one approach that might be applicable for an Eulerian 
formulation. Assume that material A is the material taking up the largest fraction 
of a zone volume, but that there is none in a neighboring zone. One might use the 
pressure in the neighboring zone to calculate what the density of A would be if it 
were present. Then this imaginary density would be used to calculate d(l/p). Of 
course, if neighboring zones contain a material common to both, d(l/p) can be 
obtained directly. 

PROBLEM EXAMPLES 

A number of problem results from UK0 calculations are presented here. The 
first group of examples were run with two different q’s: 

and 
(11) 

q2, = /xl2 I Llu I I[-AP o(l/p)y2 I + pcy(P/py [I Au [ [ [-AP 0(1/p)]“” I]“‘“. 

(12) 

The same coefficients are used to spread the shock over the same number of 
zones in each case, thereby allowing direct comparisons. For convenience and 
brevity, the first will be called the velocity q and the second the pressure q. Other- 
wise, comparisons were made between identical problems. It is worth noting that 
qu and ql, responded experimentally to the same stability condition. 

The first examples will be for the case of a plane wave shock. Consider a 30-cm 
length of ideal gas with y = 1.4 and one end against an immovable wall. At the 
other end apply a constant pressure of 1.0 Mbar. Let the gas have an initial density 
of 0.008 g/cm3 and a pressure of 0.00004 Mbar. This is a good approximation to an 
infinitely strong shock. Let c1 2 = 4 and ci12 = 0.4 with zone size dx = 0.5 cm 
(60 zones). After 2.72 psec, the shock has bounced off the wall. Table I shows the 
pressure profile of the shock as calculated by the two different q’s. 

We know analytically that, for an infinitely strong shock in an ideal gas, 

P,/Pc = (37 - l)/(r - 1)(=8 for y = 1.4), (13) 

where P, is the reflected shock pressure and Pi is the incident shock pressure. We 
note that the q2, solution is both smoother and more accurate. The shock seems to 
be slightly sharper, although this effect is not particularly significant. 
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TABLE I 

579 

J (zone) P (Mbar) for qu P (Mbar) for qD 

40 7.91 7.99 
41 7.99 7.99 
42 7.91 7.98 
43 7.96 7.99 
44 7.96 7.98 
45 7.45 7.83 
46 5.13 6.57 
47 3.03 4.44 
48 1.74 2.49 
49 1.20 1.33 
50 1.03 1.03 
51 0.99 1 .oo 
52 1.00 1.00 

The zone values near the wall are given by Table II. Zone J = 1 is next to the 
reflecting wall. 

In Table II we observe the anomalous heating introduced by the q, but we 
also observe that the effect is much worse in the qu case. For the q2, problem, 
the largest error for E (E should = 0.95) is about 15 %, but in the qu problem 
the largest error is about 60 2. Thus we see that the Rankine-Hugoniot 
conditions are preserved better by the use of the pressure q. The qD calculation 

TABLE II 

For a, For qe 

J P(Mbar) ,F( MFz:m3) 7 P(Mbar) E( MFF3) -q 

1 7.94 1.55 12.8 7.99 0.91 21.8 
2 7.96 1.16 17.2 7.99 1.10 18.2 
3 7.96 0.88 22.4 7.99 0.92 21.7 
4 7.96 0.79 25.1 7.99 0.95 21.1 
5 7.95 0.79 25.1 7.99 0.93 21.6 
6 7.92 0.80 24.7 7.98 0.94 21.1 
7 7.96 0.82 24.3 7.99 0.94 21.1 
8 7.94 0.83 23.8 7.99 0.95 21.0 
9 7.91 0.85 23.2 7.99 0.95 21.0 

10 7.96 0.88 22.6 7.99 0.95 21.0 
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comes to equilibrium much quicker than the qu does; that is, the E and 77 values 
stabilize very near the reflecting wall. The values for E and r) for the qu solution 
stabilize and approach those of the qD solution but at a much greater distance 
from the wall (larger J value). Again we note that the q2, solution is both smoother 
and more accurate. We ran a weak-shock calculation, and the results were similar. 

For our next example, let us investigate a spherically converging shock of infinite 
strength in an ideal gas of y = 1.4. Use the same initial fluid conditions as in the 
previous problem, with a 1-Mbar pressure at the outside. Let the outer radius be 
30 cm with a constant dx (= 0.3 cm) from the outside into a 6-cm radius. Let 
dx = 0.01 cm at the origin, and let the size of zones increase by a constant 
percentage (~10 %) until the zone at 6 cm radius is 0.3 cm thick. We will examine 
the problem solution near the origin, where the approximation of an infinitely 
strong shock is valid. Let cl2 = 4 and ci12 = 0.4 again. 

The analytic solution is due to Guderley [7]. For y = 1.4 we expect P,/Pi = 26 
[8] for a fixed point in space; we also expect that Pt2/x2 [9] will be a constant, where 
P is the pressure of the shock when the shock is at position x at time t. The time 
is negative for convergence, zero when the shock is at the center, and positive for 
divergence. The pressure ratio (reflected to incident values) is not a particularly 
sensitive function; both qu and qD give approximately the same answers 
(P,/P, e 23), even though the answers to the two problems are noticeably different 
in the amount of heating done to the zones in the center. 

Before the results of problems with the different q’s are compared, it should be 
pointed out that care must be taken evaluating the pressure following a converging 

TABLE III 

For qu For ql) 

J P(Mbar) E( Mty”) 7 P(Mbar) ,!Z(“~~““) 7 

1 1048 242 10.8 891 127 17.5 
2 1058 175 15.1 893 143 15.5 
3 1077 120 22.5 896 116 19.4 
4 1104 92 30.0 903 98 23.0 
5 1133 85 33.5 914 85 26.9 
6 1160 77 37.8 926 77 30.0 
7 1170 69 42.4 932 70 33.5 
8 1158 64 45.1 930 63 37.0 
9 1130 59 47.6 921 57 40.0 

10 1110 54 51.2 911 53 47.2 
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shock in spherical coordinates, because there is an adiabatic pressure increase 
following the shock (due to convergence). 

In Table III we can examine zonal values near the center of the sphere after the 
shock has been reflected (at a time when the reflected shock is at a radius 
of 0.17 cm). The two solutions are quite different, and we might surmise that the 
anomalous q heating is much improved by the pressure q. The flatter pressure 
distribution of the qB solution also appears more believable, but such observations 
are not all conclusive. 

However, we know that Pt2/r2 must be a constant for the shock, and in Fig. 2 
this quantity is plotted for both the converging and diverging shocks. Note that 
the scales for the Pt2/r2 axes are different for the converging shock and the diverging 
shock. The solution is clearly much more favorable for the qD case. 

DIVERGING 
SHOCK 

0.2 

Time (u10m2 psec or nrec) 

FIG. 2. (W/P) vs t. 

Some spherical problems were also run with weak shocks generated at the outer 
surface, and they displayed qualitatively similar properties. 

For a final example, consider a lo-cm-radius sphere of high explosive at the center 
of a IOO-cm-radius sphere of iron; let the explosive be ignited throughout its volume 
at the start of the problem, with dx = 1 cm. Table IV presents the pressure profile 
of the shock when it has nearly reached the outer boundary of the iron sphere. 
Also shown in Table IV is the region of the explosive-iron interface at the same time 
(time = 178psec). Here cl2 = 5.5 and c t’2 = 3.0 (more damping is usually 
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TABLE IV 

J X (cm) 
- - 

94 94.0 3.95 
93 93.0 6.13 
92 92.0 8.32 
91 91.0 10.1 
90 90.0 11.2 
89 89.0 11.6 
88 88.0 11.5 
87 87.1 11.0 
86 86.1 10.5 
85 85.1 10.0 
- 
- 
- 
15 
14 
13 
12 
11 

- 

3.49 
5.72 
8.15 

10.2 
11.5 
11.9 
11.7 
11.1 
10.4 
9.9 

- - 
- - 
19.0 5.6 
18.4 5.4 
17.8 5.5 
17.3 5.1 
16.5 4.8 

- 
5.8 
5.7 
5.6 
5.5 
5.3 

Material interface 

10 14.8 5.1 5.1 
9 13.1 5.0 5.1 
8 11.4 5.1 5.1 
7 9.7 5.1 5.1 
6 8.0 5.1 5.1 

P (kbar) for q. P (kbar) for qs 

Iron 

High explosive 

required for spherically diverging waves in solids). The ql, solution is better, in that 
the shock is sharper and the pressure profile is smoother at the interface. 

A wide variety of other problems (and materials) were examined, all of which 
showed improvement through the use of q2, . A plane-wave problem was run with 
a pressure profile on each end; and, after the shocks collided, the result was identical 
to the result of the rigid-wall problem. Planar problems with many materials (gases 
and solids) were run to examine the anomalous heating at interfaces; in every case, 
the q9 result was a considerable improvement over the qu result. It should be noted 
that all the above problems avoided interfaces with large differences in zone size. 
Problems were run with large zone-size changes at interfaces, and the anomalous 
heating was a serious problem for both forms of the q (although slightly less 
troublesome for qp). 

The previous problem examples were run basically with a quadratic term, while 
the 3/2 power term could be considered as a perturbation term (admittedly large 
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in the last example) to obtain smoothing. This meant that all the analysis in Ref. [I] 
applied reasonably well. We have also seen that the 312 power term has desirable 
damping properties by itself. 

We will now examine some problems that have only one q term, in order to 
isolate specific effects and to demonstrate that the 3/2 power q alone is sufficient 
for many problems. The problem example used here is the same as the first: a plane 
strong shock in gas with y = 1.4. Table V gives the results of using several 
different q’s. The constants were chosen to provide shock widths of the same size. 
The results can also be compared to those of Table II. 

TABLE V 

q=4p1du12 q = 3p(p/p)‘14 1 Au IS/? q = 3p(P,‘,7)1/4 / Au Ia’* 1 [-&‘A(t/~)l”* /3’4 
J 

(wall) P E P E P E 

1 7.959 1.54 7.974 1.59 7,994 0.96 
2 7.953 1.13 7.974 1.07 7.993 1.13 
3 7.954 0.86 7.974 0.96 7.993 0.95 
4 7.938 0.78 7.975 0.83 7.992 0.96 
5 7.938 0.79 7.974 0.84 7,992 0.94 
6 7.935 0.80 7.974 0.86 1.992 0.95 
7 7.925 0.82 7.975 0.87 7.991 0.95 
8 7.930 0.84 7.974 0.89 7.992 0.95 
9 7.937 0.86 7.974 0.90 7.992 0.95 

10 7.932 0.87 7.974 0.92 7.993 0.95 

First we note that the 3/2 power term in / Au / has provided considerable smooth- 
ness and slightly more accuracy than the quadratic term provides. This results 
from the fact that the 3/2 power term provides more damping near the trailing 
edge of the shock. However, going to 312 power in AU has not helped the heating 
at the wall. 

The heating at the wall has been improved by the Au mixed with [ -0 d(l/p)]1/2 
(and the accuracy in the pressure column has also been slightly improved). One 
might anticipate that the 3-point difference scheme for dP or d (1 /p) is a reason for 
the big improvement and replace Au by [--dP~I(l/p)]~~~ entirely. However, the 
results of such a calculation are similar to the pure [ AU / examples in Table V, 
although the calculation is noisier. This supports the idea that it is the mix of zone 
and grid quantities that provides the improvement. 

Plane-wave ideal-gas (y = 1.4) problems have been run with a small q coefficient, 
specifically using 

q = 2p(P/p)1/4 1 du p4 j [-LlP Ll(l/P)]f’” /+, (14) 
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and the results are extremely smooth and accurate (almost as good as the right- 
hand column of Table V). However, the pressure values at the shock give a much 
sharper shock (by a factor of approximately 2/3). The accuracy of the values near 
the shock is still excellent and virtually noise-free. Cutting the multiplier in half 
(from 2 to 1) does, however, lead to a noisy and less satisfactory solution. A smaller 
multiplier means savings in machine time. 

This paper has not examined the linear q. However, it should be mentioned that 
problems have been run using it, and their performance is also improved by mixing 
zone and grid quantities via the second Rankine-Hugoniot condition. 

USE OF THE THIRD RANKINE-HUGONIOT EQUATION 

Up to this point, we have seen that shock shapes are relatively unaffected by use 
of the second Rankine-Hugoniot equation. This might have been anticipated, 
since du and [--rlP d(l/p)] l/2 could be expected to show similar functional behavior 
in a shock. However, the third Rankine-Hugoniot equation is 

A!? = -w1 + P2W) 4h4 (15) 

where PI and P, are the pressure values of the regions before and after the shock. 
These values (P, and P2) are really unknowns, and the replacement of l/2 (PI + P2) 
by some quantity such as P will introduce an uncertain functional behavior into 
a q. In fact, it will be seen that the shape of the shock can be significantly affected. 

A wide variety of problem types have been run, and they indicate that the third 
Rankine-Hugoniot equation provides improvement in the anomalous heating at 
boundaries and interfaces. Again, the best choice for q is indicated experimentally 
to be an equal mix of zone quantities and grid quantities. 

Then a 3/2 power q would have the following form: 

q = pc3/2w114 1 Au 13/d I[dP(--d(l/p)dE/P)1/2]1/2 13/4. (16) 

The results of this q in a plane strong shock for y = 1.4 (like the results of Table V) 
are given in Table VI and are compared to the best q of Table V. 

The accuracy is considerably improved at the wall; the size of the worst error 
in the calculation of E has been reduced by a factor of 24. At the same time, we 
note that the shock is sharper and of a considerably different shape for the reflected 
shock shown in Table VI. However, the incident shock did not have a significantly 
different shape. Weak shock problems also did not display significantly different 
shock shapes for the different q forms. 

Approximating ij(Pl + Pz) by some quantity such as P might be found to have 
adverse effects for some material equations of state, although this has not yet been 
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TABLE VI 

q = 3p(P/p)‘/4/ Au j3j4 / [-APA(l/p)]‘121 q = 3~(P/p)“~ I Au 13’4 1 [AP-A(l/p)(AE/P)“21’12 13” 

J P E P E 

51 1.000 
50 1.005 
49 1.065 
48 1.456 
41 2.802 

Shock 46 4.728 
45 6.506 
44 7.571 
43 7.945 
42 1.992 
41 7.994 
- - 
- - - 
- - - - 
10 7.993 0.951 7.998 

9 7.992 0.950 7.997 
8 7.992 0.950 7.997 
7 7.991 0.945 7.996 
6 7.992 0.946 7.996 
5 7.992 0.940 1.997 
4 1.992 0.964 7.997 
3 7.993 0.955 7.998 
2 7.993 1.140 7.998 

Wall 1 7.994 0.963 7.998 

0.417 
0.420 
0.421 
0.484 
0.652 
0.804 
0.896 
0.938 
0.951 
0.952 
0.952 

1.000 0.417 
1.004 0.417 
1.058 0.424 
1.565 0.497 
4.040 0.756 
6.555 0.900 
7.750 0.947 
7.981 0.955 
7.951 0.954 
7.985 0.954 
7.976 0.953 

- 

- 
0.950 
0.949 
0.947 
0.944 
0.939 
0.938 
0.937 
0.948 
1.03 
0.929 

observed. Equation (16) also provides less damping at the trailing edge of the 
shock and results in a noisier solution, which can be smoothed by adding more 
damping (such as a lower-order of 4). 

CONCLUSIONS 

Empirically derived forms of artificial viscosity have been described that are 
uniquely associated with shocks; and, for the problems investigated, they provide 
smoother and more accurate answers, in comparison with methods given in 
Ref. [l]. They improve solution behavior at interfaces, and, in particular, they 
improve anomalous heating by a considerable factor at walls. Whether a quadratic 
term, 3/2 power term, linear term, some other term, or a combination of terms 
should be used in a calculation depends on the types of materials being modeled 
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and the pressure regime of interest. Some conclusions I’ve reached regarding the 
use of these artificial viscosity forms are presented in Appendix D. 

A weak-shock version could be used easily in some Eulerian codes, but clever 
programming would be required for an Eulerian code capable of describing strong- 
shock systems; still, one suspects it can be done, just as one might also expect 
benefits in multidimensional Lagrangian codes. The use of Rankine-Hugoniot 
relations in the difference equations for shock-sensitive forms may be widely useful, 
for example, in conservative schemes. 

APPENDIX A 

The 4 Eqs. (3) and (4) would be identical if 

(Al) 

Consider a coordinate system moving with the shock; then o is the distance from 
the shock where 

0 = x - St, (A3 

where s is the shock speed. Then we would have identical forms if 

(dUjdw)2 = -(dPjdw)(dVjdw), (A3) 

where V = l/p. But we know from the continuity equation that 

-M(dV/dw> = (dU/do), CA4) 

where M = p,s (p,, is the density in undisturbed regions). Thus the forms are the 
same if 

-M*(dV/dw) = (dpldw). (A51 

In contradiction, however, the equation of motion [Eqs. (2)] and (A4) gives the 
result 

-M”(dV/do) = (djdw)(p + q). GW 

For the solution by von Neumann and Richtmyer [I], J (dq/dw) dw = 0 when 
evaluated over the shock. This will be true for any q that equals zero at the shock 
edges. Thus one is not surprised that the new q gives results like those of Ref. 1. 
In fact, numerical experiments with the pressure q produce shock-wave shapes 
(pressure vs w, density vs w, etc.) that are virtually indistinguishable from the 
traditional q given by von Neumann and Richtmeyer. 
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APPENDIX B 

Consider perturbations 6 U, 6 V, SP, and Sq on the desired solutions for a y-law 
gas. Assume these perturbations are of the form 

SIJ = ijUoeik+ut, SV = SVoeikz+at, etc., 031) 

where 6 U,, , 6 V,, , SP, , Sq, , k, and cy. are constant and k is real. We then obtain 
from the equations of continuity, momentum, and energy and the equation for 
q the following set of linear equations: 

ape SV, - ik SU,, = 0, W 

ikSq,+olp,SU,,+ikSP,,=O, (B3) 

(y - 1) ?$6q, + [$ + CyyP + oI(y - 1) (c A;)3’2 1 g 11’2 G] SVll 

+sP,fVa+yg =O, (B4) 

(dx)3/2 au au 112 
-sq, + wljz V2 - - I I ax ax 

sv _ 2 ik (C Ax)~‘~ 
O 2 V 

pm2 - 
I I 

au li2 &-Jo = 0, 
ax 

where we have used 
(B5) 

q = -[cc Axypq WI/~ 1 au/ax pyau/ax) 036) 

for a shock traveling in the positive x direction. (Thus q is positive, since au/ax is 
negative.) The determinant of the above must equal zero in order to have a solution. 
We then obtain the determinantal equation: 

o= -((:Ypo)2(va+yg 
3 (c 4x)3/2 

+ (Y - 1) LyPo Fj v I I 
au l/2 w,2k2 z 
ax at 

av (C AX)~/~ 
- - k2b - 1) at v2 W112f.K au li2 

I I ax ax 

+ k2 ( Vol + y $) (’ $T’l g 1 g 1”’ 

_ k2 [?w& + &’ + aW1/2(y - 1) (’ ‘;)“’ 1 g 1”’ g] . (B7) 

If we restrict ourselves to the dominant terms (highest order in k and OL), we get 

01 = -(3/2) k2[(c Ax)~/~/~,V] w112 1 au/ax j1j2 in shocked regions W) 
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and 
cy2 = -(k2yP/pozV) in normal regions. (W 

Thus perturbations are damped out in the shock, but they are propagated without 
change in normal regions. This result is like von Neumann and Richtmeyer’s [I] 
for the quadratic q. A linear q would have obtained a value for 01 in the shock 
region proportional to / au/ax lo, which does not go to zero at the shock 
boundaries. (At this point, it is appropriate to restate that the purpose of the q 
is to eliminate the discontinuities in the solutions of the differential equations, so 
that difference equations can be applied.) It would seem that the decay constant 01 
is one solution variable (even though a numerical artifact) that should be continuous. 
Thus we would prefer to avoid a linear q if at all possible. The same kind of analysis 
can be performed for 

q = cc A43’2 Wl,Z x 
[ ( 

aP @l/p) l/2 3/2 --- 
V ax ) I ax ax ' 

with similar results. 

APPENDIX C 

An elastic solid is characterized by an equation of state (E.O.S.) for which the 
pressure is a function of only the volume. The following equation defining the bulk 
modulus (K) is a standard way to express the E.O.S.: 

K = -V(dP/dV), (Cl) 

where V is the specific volume (l/p) and P is the pressure. The E.O.S. is complete 
if Kis given as a function of volume. 

Then, for the quadratic q we obtain 

q/P = pc2 j AI’ AV j/P. GY 

But A V = - V AP/K from Eq. (Cl), hence 

q/P = ( Vpc2/K)(AP/P) AP, (C3) 

which approaches zero as AP approaches zero. 
For the linear q we have 

dp = WI PC Au/P, (C4) 
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where SS is the sound speed. Then, using Eq. (Cl) we get 

q/P = (Vl~ZSSpc/rcl~“)(dP/P). (C5) 

This function is well behaved, in the sense that it is only the relative value of AP 
to P that matters. 

APPENDIX D 

Viecelli [lo] has recently shown how a linear q determines the form of the solution 
for spherically decaying shocks in a solid. This work gives ample evidence of the 
need to minimize the linear q coefficient. In Viecelli’s analysis, the linear q is cal- 
culated for positive pressures, regardless of the sign of &/ax. (Thus, qL is negative 
for expanding zones.) I have found it convenient to implement the linear q in the 
same fashion; but q is set equal to zero if its absolute value is less than a given 
fraction (typically set ==O.OOl) of the pressure. For most problems, c2 = 2 (for 
the quadratic multiplier) and cL = 0.2 proves quite adequate. This provides sharp 
shocks (a smaller c2 than was used in the earlier examples) that are still smooth, 
and yet the cL is not too large for most calculations. Then we have 

I. for P < 0.0, 

q == 0.0 

II. for P > 0.0, 

for dV < 0 
I 
q = 2.0p Au(-AP Al/p)‘/” \ 

+ O.~(SS)~ 1 Au 11j2 (-AP Al/p~)l/~/ 

for do > O {q = -O.2(SS)p / AU I1i2 (-AP A~/P)‘/~ 

If 1 q / < fraction (typically O.OOl)P, 

q = 0.0. /’ 

CD11 

Furthermore, I have observed that using a large At improves the anomalous 
heating slightly, provided that the stability condition is not violated. The form 
recommended here is quite similar to the one published in [6]. 

Let 
At = 2/3 {Ax/[(ss)2 + b2]1j2}, 032) 

where b = 2c2 dx( p/ V), and SS is the sound speed. 
Using this At control and the q multipliers given in Eq. (Dl), the largest error 

in the anomalous heating effect for the problem described in Tables I, II, V, and VI 
was only 8 % (similar to the best result in Table VI). 

581/1x/4-9 
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These recommendations are obviously subjective and reflect my set of cal- 
culations and my bias regarding shock sharpness, smoothness, accuracy, computer 
time, etc. 
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